Deep Learning for Medical Image Segmentation
نویسنده
چکیده
This report provides an overview of the current state of the art deep learning architectures and optimisation techniques, and uses the ADNI hippocampus MRI dataset as an example to compare the effectiveness and efficiency of different convolutional architectures on the task of patch-based 3dimensional hippocampal segmentation, which is important in the diagnosis of Alzheimer’s Disease. We found that a slightly unconventional ”stacked 2D” approach provides much better classification performance than simple 2D patches without requiring significantly more computational power. We also examined the popular ”tri-planar” approach used in some recently published studies, and found that it provides much better results than the 2D approaches, but also with a moderate increase in computational power requirement. Finally, we evaluated a full 3D convolutional architecture, and found that it provides marginally better results than the tri-planar approach, but at the cost of a very significant increase in computational power requirement. ar X iv :1 50 5. 02 00 0v 1 [ cs .L G ] 8 M ay 2 01 5
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملSelf-Learning to Detect and Segment Cysts in Lung CT Images without Manual Annotation
Image segmentation is a fundamental problem in medical image analysis. In recent years, deep neural networks achieve impressive performances on many medical image segmentation tasks by supervised learning on large manually annotated data. However, expert annotations on big medical datasets are tedious, expensive or sometimes unavailable. Weakly supervised learning could reduce the effort for an...
متن کاملDeep learning and its application to medical image segmentation
One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and sem...
متن کاملFully Convolutional Structured Lstm Networks for Joint 4d Medical Image Segmentation
Longitudinal medical image analysis has great potential to reveal developmental trajectories and monitor disease progression. This process relies on consistent and robust joint 4D segmentation. Traditional methods highly depend on the similarity of images over time and either build a template or assume the images could be co-registered. This process may fail when image sequences present major a...
متن کاملGenerative Adversarial Network based Synthesis for Supervised Medical Image Segmentation*
Modern deep learning methods achieve state-ofthe-art results in many computer vision tasks. While these methods perform well when trained on large datasets, deep learning methods suffer from overfitting and lack of generalization given smaller datasets. Especially in medical image analysis, acquisition of both imaging data and corresponding ground-truth annotations (e.g. pixel-wise segmentation...
متن کاملDeep Learning Neural Network with Semi supervised Segmentation for Predicting Retinal and Cancer Cell Diseased
In medical field, diagnosis of diseases competently carried out by using the image processing. So that to retrieve the relevant data from the amalgamation of resulting image is too difficult. Here the segmentation done by semi supervised learning then the result is tuned by using Deep Learning Neural Network. Higher tuning of results will leads to efficient detection of disease. The experiment ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.02000 شماره
صفحات -
تاریخ انتشار 2015